415 research outputs found

    The tricellular vertex-specific adhesion molecule Sidekick facilitates polarised cell intercalation during Drosophila axis extension.

    Get PDF
    In epithelia, tricellular vertices are emerging as important sites for the regulation of epithelial integrity and function. Compared to bicellular contacts, however, much less is known. In particular, resident proteins at tricellular vertices were identified only at occluding junctions, with none known at adherens junctions (AJs). In a previous study, we discovered that in Drosophila embryos, the adhesion molecule Sidekick (Sdk), well-known in invertebrates and vertebrates for its role in the visual system, localises at tricellular vertices at the level of AJs. Here, we survey a wide range of Drosophila epithelia and establish that Sdk is a resident protein at tricellular AJs (tAJs), the first of its kind. Clonal analysis showed that two cells, rather than three cells, contributing Sdk are sufficient for tAJ localisation. Super-resolution imaging using structured illumination reveals that Sdk proteins form string-like structures at vertices. Postulating that Sdk may have a role in epithelia where AJs are actively remodelled, we analysed the phenotype of sdk null mutant embryos during Drosophila axis extension using quantitative methods. We find that apical cell shapes are abnormal in sdk mutants, suggesting a defect in tissue remodelling during convergence and extension. Moreover, adhesion at apical vertices is compromised in rearranging cells, with apical tears in the cortex forming and persisting throughout axis extension, especially at the centres of rosettes. Finally, we show that polarised cell intercalation is decreased in sdk mutants. Mathematical modelling of the cell behaviours supports the notion that the T1 transitions of polarised cell intercalation are delayed in sdk mutants, in particular in rosettes. We propose that this delay, in combination with a change in the mechanical properties of the converging and extending tissue, causes the abnormal apical cell shapes in sdk mutant embryos

    Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study

    Get PDF
    Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure

    Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells

    Get PDF
    Mechanical abuse of lithium-ion batteries is widely used during testing to induce thermal runaway, characterize associated risks, and expose cell and module vulnerabilities. However, the repeatability of puncture or ‘nail penetration’ tests is a key issue as there is often a high degree of variability in the resulting thermal runaway process. In this work, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time. The initiation and propagation of thermal runaway is visualized via high-speed synchrotron X-ray radiography at 2000 frames per second, and the surface and internal temperatures are recorded via infrared imaging and a thermocouple embedded in the tip of the penetrating nail, respectively. The influence of the nail, as well as how and where it penetrates the cell, on the initiation and propagation of thermal runaway is described and the suitability of this test method for representing in-field failures is discussed

    Avaliação do incremento em volume de madeira de Quassia amara L.- Simaroubaceae, em cultivo agroecológico no trópico úmido da Costa Rica.

    Get PDF
    Quassia amara é arbusto de 3 a 6 metros de altura, tendo sido retirado indiscriminadamente das florestas para extrair do caule as quassinas usadas na indústria farmacêutica e como inseticida em agricultura orgânica. Não se tem muita informação técnica acerca do crescimento desta espécie para subsidiar estratégias de manejo sustentado. Este trabalho tem como objetivo avaliar o crescimento de Q. amara L. em cultivo agroecológico na Costa Rica. O trabalho consistiu em realizar avaliações do desenvolvimento de indivíduos de Q. amara em parcelas permanentes de medições, instaladas em meio às plantações desta espécie em consórcio com essências arbóreas. Foram efetuadas medições de diâmetro do caule a 10 cm do solo e altura total. Foi observado que em função das taxas de crescimento vegetal e incrementos médio e corrente anuais (IMA e ICA), mesmo após cinco anos de plantio, a madeira de Quassia amara para extração de quassinas não está pronta para colheita

    Contradictory concepts in tortuosity determination in porous media in electrochemical devices

    Get PDF
    Porous media are a vital component in almost every electrochemical device in the form of electrode, support or gas diffusion layers. Microstructural parameters of porous layers such as tortuosity, porosity and pore size diameter are of high importance and crucial for diffusive mass transport calculations. Among these parameters, the tortuosity remains ill-defined in the field of electrochemistry, resulting in a wide range of different calculation approaches. Here, we present a systematic approach of calculating the tortuosity of different porous samples using image and diffusion cell experimental-based methods. Image-based analyses include a selection of geometric and flux-based tortuosity calculation algorithms. Differences between the image and diffusion cell-based results are encountered and attributed to the small pore diameters and thereby induced Knudsen effects within the samples which govern the diffusion flux

    Efeitos da exploração de uma floresta tropical úmida sobre o microambiente e sua influência na regeneração de sítios perturbados.

    Get PDF
    Apresenta-se uma análise das perturbações do microambiente causadas pela exploração de uma floresta tropical manejada, na zona atlântica de Costa Rica. An analysis of the disturbance of the microenvironment caused by the utilization of a managed tropical rain forest in the Atlantic region of ​​Costa Rica is presented

    In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Get PDF
    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features

    Introduction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69081/2/10.1177_0261927X99018001001.pd
    corecore